Radiant’s goal is to provide access to the power of R for business analytics. Although Radiant’s web-interface can handle quite a few data and analysis tasks, at times you may prefer to write your own code. Radiant provides a bridge to programming in R(studio) by exporting the functions used for analysis. For example, you can run your analyses in Radiant and output the relevant function calls to an Rmarkdown document. Most pages in the app have an icon you can click (e.g., the book icon on the bottom left on the Basics > Means > Single mean page) to start working on your report. Press the Knit report button on the R > Report page to render the report to HTML. See Report page for details. The function manuals are available linked below:

You can also use Rstudio to render and edit Rmarkdown documents generated in Radiant. When you install and load Radiant it exports functions that can be called from R-code and/or an Rmarkdown document.

If you close Radiant by clicking the icon in the navigation bar and then click Stop after launching it from R(studio) you can paste the commands below into the command console to get the same output as in the browser interface.

result <- single_mean(diamonds, "price")
summary(result)
Single mean test
Data      : ----- 
Variable  : price 
Confidence: 0.95 
Null hyp. : the mean of price = 0 
Alt. hyp. : the mean of price is not equal to 0 

     mean       sd    n n_missing
 3907.186 3956.915 3000         0

     diff     se t.value p.value   df     2.5%    97.5%    
 3907.186 72.243  54.084  < .001 2999 3765.535 4048.837 ***

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(result)

You can also call functions for visualization (see below) and access help from the console using ?visualize

visualize(diamonds, xvar = "carat", yvar = "price", type = "scatter",
          facet_row = "clarity", color = "clarity")

As an example, you can render the single_mean.Rmd file into html (or PDF or Word if you prefer) in Rstudio. Try the code in radiant_rcode.R for a more extensive example.

To install the latest version of Radiant with complete documentation for offline access, open R(studio) and copy-and-paste the commands below:

install.packages("radiant", repos = "https://radiant-rstats.github.io/minicran/")
library(radiant)

This will load the library and the required packages. To see the index of functions currently available in the Radiant package using the help(package = "radiant") command

Lets start by comparing the mean of a variable to a (population) value using R’s built-in mtcars dataset. This functionality is in the Radiant menu Basics > Means > Single mean. The analysis is conducted in function single_mean. Calling the summary method on the result object will show tabular output. Calling plot on the same result object will produce plots to help evaluate the hypothesis.

result <- single_mean(mtcars, "mpg", comp_value = 20, alternative = "greater")
summary(result)
Single mean test
Data      : ----- 
Variable  : mpg 
Confidence: 0.95 
Null hyp. : the mean of mpg = 20 
Alt. hyp. : the mean of mpg is > 20 

   mean    sd  n n_missing
 20.091 6.027 32         0

  diff    se t.value p.value df     5% 100%  
 0.091 1.065   0.085   0.466 31 18.284  Inf  

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(result, plots = c("hist","simulate"))

To compare the mean price of diamonds across different levels of clarity we can call the compare_means function:

result <- compare_means(diamonds, "clarity", "price")
summary(result)
Pairwise mean comparisons (t-test)
Data      : ----- 
Variables : clarity, price 
Samples   : independent 
Confidence: 0.95 
Adjustment: None 

 clarity     mean   n       sd      se      ci
      I1 4194.775  40 2519.678 398.396 805.832
     SI2 5100.189 529 4406.982 191.608 376.407
     SI1 3998.577 721 3813.190 142.011 278.804
     VS2 3822.967 661 3917.484 152.372 299.193
     VS1 3789.181 442 3880.907 184.596 362.797
    VVS2 3337.820 284 3932.706 233.363 459.348
    VVS1 2608.460 224 3201.282 213.895 421.513
      IF 2411.697  99 3330.560 334.734 664.268

 Null hyp.     Alt. hyp.                diff     p.value    
 I1 = SI2      I1 not equal to SI2      -905.414 0.045   *  
 I1 = SI1      I1 not equal to SI1       196.198 0.645      
 I1 = VS2      I1 not equal to VS2       371.808 0.387      
 I1 = VS1      I1 not equal to VS1       405.594 0.36       
 I1 = VVS2     I1 not equal to VVS2      856.955 0.068   .  
 I1 = VVS1     I1 not equal to VVS1     1586.315 0.001   ***
 I1 = IF       I1 not equal to IF       1783.078 0.001   ***
 SI2 = SI1     SI2 not equal to SI1     1101.612 < .001  ***
 SI2 = VS2     SI2 not equal to VS2     1277.222 < .001  ***
 SI2 = VS1     SI2 not equal to VS1     1311.008 < .001  ***
 SI2 = VVS2    SI2 not equal to VVS2    1762.369 < .001  ***
 SI2 = VVS1    SI2 not equal to VVS1    2491.729 < .001  ***
 SI2 = IF      SI2 not equal to IF      2688.492 < .001  ***
 SI1 = VS2     SI1 not equal to VS2      175.610 0.399      
 SI1 = VS1     SI1 not equal to VS1      209.396 0.369      
 SI1 = VVS2    SI1 not equal to VVS2     660.757 0.016   *  
 SI1 = VVS1    SI1 not equal to VVS1    1390.117 < .001  ***
 SI1 = IF      SI1 not equal to IF      1586.880 < .001  ***
 VS2 = VS1     VS2 not equal to VS1       33.786 0.888      
 VS2 = VVS2    VS2 not equal to VVS2     485.147 0.082   .  
 VS2 = VVS1    VS2 not equal to VVS1    1214.507 < .001  ***
 VS2 = IF      VS2 not equal to IF      1411.270 < .001  ***
 VS1 = VVS2    VS1 not equal to VVS2     451.361 0.13       
 VS1 = VVS1    VS1 not equal to VVS1    1180.721 < .001  ***
 VS1 = IF      VS1 not equal to IF      1377.484 < .001  ***
 VVS2 = VVS1   VVS2 not equal to VVS1    729.360 0.022   *  
 VVS2 = IF     VVS2 not equal to IF      926.123 0.024   *  
 VVS1 = IF     VVS1 not equal to IF      196.763 0.621      

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(result, plots = c("bar","density"))

These datasets are available after loading the radiant library. We can also load data through Radiant’s web interface and then access the data from the console after closing the app. Start radiant using the command below and then click select Examples from the Load data of type dropdown in the Data > Manage tab. Then close the app by clicking the power icon and then clicking Stop.

## start radiant in Rstudio, load the example data, then click the power icon and Stop
radiant()

We can now use the compare_means function to evaluate salary data for professors of different ranks using:

result <- compare_means(salary, "rank", "salary")
summary(result)
Pairwise mean comparisons (t-test)
Data      : ----- 
Variables : rank, salary 
Samples   : independent 
Confidence: 0.95 
Adjustment: None 

      rank      mean   n        sd       se       ci
  AsstProf  80775.99  67  8174.113  998.627 1993.823
 AssocProf  93876.44  64 13831.700 1728.962 3455.056
      Prof 126772.11 266 27718.675 1699.541 3346.322

 Null hyp.              Alt. hyp.                         diff      p.value    
 AsstProf = AssocProf   AsstProf not equal to AssocProf   -13100.45 < .001  ***
 AsstProf = Prof        AsstProf not equal to Prof        -45996.12 < .001  ***
 AssocProf = Prof       AssocProf not equal to Prof       -32895.67 < .001  ***

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(result)

An alternative way to write this code is to use piping (see dplyr and magrittr vignettes)):

salary %>% compare_means("rank", "salary") %>% {summary(.); plot(.)}

Pairwise mean comparisons (t-test)
Data      : ----- 
Variables : rank, salary 
Samples   : independent 
Confidence: 0.95 
Adjustment: None 

      rank      mean   n        sd       se       ci
  AsstProf  80775.99  67  8174.113  998.627 1993.823
 AssocProf  93876.44  64 13831.700 1728.962 3455.056
      Prof 126772.11 266 27718.675 1699.541 3346.322

 Null hyp.              Alt. hyp.                         diff      p.value    
 AsstProf = AssocProf   AsstProf not equal to AssocProf   -13100.45 < .001  ***
 AsstProf = Prof        AsstProf not equal to Prof        -45996.12 < .001  ***
 AssocProf = Prof       AssocProf not equal to Prof       -32895.67 < .001  ***

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can also run regressions and get output in a format that would require many lines of code to produce from scratch:

result <- regress(diamonds, "price", c("carat","clarity"))
summary(result, sum_check = "confint")
Linear regression (OLS)
Data     : ----- 
Response variable    : price 
Explanatory variables: carat, clarity 
Null hyp.: the effect of x on price is zero
Alt. hyp.: the effect of x on price is not zero

              coefficient std.error t.value p.value    
 (Intercept)    -6780.993   204.952 -33.086  < .001 ***
 carat           8438.030    51.101 165.125  < .001 ***
 clarity|SI2     2790.760   201.395  13.857  < .001 ***
 clarity|SI1     3608.531   200.508  17.997  < .001 ***
 clarity|VS2     4249.906   201.607  21.080  < .001 ***
 clarity|VS1     4461.956   204.592  21.809  < .001 ***
 clarity|VVS2    5109.476   210.207  24.307  < .001 ***
 clarity|VVS1    5027.669   214.251  23.466  < .001 ***
 clarity|IF      5265.170   233.658  22.534  < .001 ***

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-squared: 0.904,  Adjusted R-squared: 0.904 
F-statistic: 3530.024 df(8,2991), p.value < .001
Nr obs: 3,000 

             coefficient      2.5%     97.5%     +/-
(Intercept)    -6780.993 -7182.855 -6379.131 401.862
carat           8438.030  8337.834  8538.227 100.196
clarity|SI2     2790.760  2395.873  3185.646 394.886
clarity|SI1     3608.531  3215.384  4001.679 393.148
clarity|VS2     4249.906  3854.604  4645.208 395.302
clarity|VS1     4461.956  4060.801  4863.111 401.155
clarity|VVS2    5109.476  4697.311  5521.640 412.165
clarity|VVS1    5027.669  4607.574  5447.764 420.095
clarity|IF      5265.170  4807.024  5723.317 458.147
predict(result, pred_cmd = "carat = 1:10")
Linear regression (OLS)
Data                 : ----- 
Response variable    : price 
Explanatory variables: carat, clarity 
Prediction command   : carat  =  1:10 

 clarity carat Prediction      2.5%     97.5%      +/-
     SI1     1   5265.569  2859.633  7671.505 2405.936
     SI1     2  13703.599 11294.952 16112.246 2408.647
     SI1     3  22141.629 19726.114 24557.145 2415.515
     SI1     4  30579.660 28153.155 33006.165 2426.505
     SI1     5  39017.690 36576.130 41459.250 2441.560
     SI1     6  47455.720 44995.114 49916.327 2460.607
     SI1     7  55893.751 53410.198 58377.303 2483.552
     SI1     8  64331.781 61821.491 66842.072 2510.291
     SI1     9  72769.811 70229.110 75310.513 2540.701
     SI1    10  81207.842 78633.187 83782.496 2574.655
plot(result, plots = "coef")

plot(result, plots = "dashboard")

As another example, imagine that you want to segment a sample of respondents based on their toothpaste attitudes. Below is the required code to produce results using functions from the Radiant package. For help on the commands and options for cluster analysis use ?hier_clus, ?plot.hier_clus, and ?kmeans_clus. See also the Radiant function manuals linked above.

## load the radiant library (not needed if run in Radiant's R > Code tab)
library(radiant.multivariate)

## load the data directly from a url
shopping <- loadrda_url("https://github.com/radiant-rstats/radiant.multivariate/blob/master/data/shopping.rda?raw=true")

## run hierarchical cluster analysis on the shopping data, variables v1 through v6
result <- hier_clus(shopping, "v1:v6")

## summary - not much here - plots are more important
summary(result)
Hierarchical cluster analysis
Data        : ----- 
Variables   : v1:v6 
Method      : ward.D 
Distance    : sq.euclidian 
Observations: 20 
## check the help file on how to plot results from hierarchical cluster analysis
## default plots - looks like there is a big jump in overall within-cluster
## heterogeneity in the step from 3 to 2 segments
plot(result)

## show the dendrogram with cutoff at 0.1
plot(result, plots = "dendro", cutoff = 0.1)

## plots created above suggest 3 clusters may be  most appropriate
## use kmeans to create the clusters
## generate output and save clustermembership to the datafile
result <- kmeans_clus(shopping, vars = "v1:v6", nr_clus = 3)
summary(result)
K-means cluster analysis
Data        : ----- 
Variables   : v1:v6 
Method      : ward.D 
Distance    : sq.euclidian 
Observations: 20 
Generated   : 3 clusters of sizes 8, 6, 6 

Cluster means:
             v1   v2   v3   v4   v5   v6
 Cluster 1 5.75 3.62 6.00 3.12 1.88 3.88
 Cluster 2 1.67 3.00 1.83 3.50 5.50 3.33
 Cluster 3 3.50 5.83 3.33 6.00 3.50 6.00

Percentage of within cluster variance accounted for by each cluster:
                
Cluster 1 40.31%
Cluster 2 25.98%
Cluster 3 33.71%

Between cluster variance accounts for 73.93% of the
total variance in the data (higher is better).
plot(result)

shopping <- store(result)

## was the data really changed?
head(shopping)
  v1 v2 v3 v4 v5 v6 kclus3
1  6  4  7  3  2  3      1
2  2  3  1  4  5  4      2
3  7  2  6  4  1  3      1
4  4  6  4  5  3  6      3
5  1  3  2  2  6  4      2
6  6  4  6  3  3  4      1

See if you can reproduce this output in the radiant web-interface. Start Radiant from the Addins dropdown in Rstudio. You can also run code inside the Radiant app in the R > Code tab. See Code page for details.

© Vincent Nijs (2016) Creative Commons License